Carbonyl reduction of mequindox by chicken and porcine cytosol and cloned carbonyl reductase 1.

نویسندگان

  • Xianqing Tang
  • Peiqiang Mu
  • Jun Wu
  • Jun Jiang
  • Caihui Zhang
  • Ming Zheng
  • Yiqun Deng
چکیده

Mequindox (MEQ) is a novel synthetic quinoxaline 1,4-dioxides derivative, which is widely used as a veterinary drug and animal feed additive. However, the metabolic mechanism of MEQ is rarely reported. The N-oxide reduction mechanism of MEQ was reported in our previous work. In this article, the toxicity and the reduction of the carbonyl of MEQ were studied. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays demonstrated that the carbonyl-reduced MEQ, 2-isoethanol MEQ was much less toxic than MEQ. High-performance liquid chromatography analysis showed that the cytosol extracts of chicken and pig livers were able to reduce MEQ to 2-isoethanol MEQ and the reaction was NADPH-dependent. Further study via enzyme-inhibitory experiment revealed that carbonyl reductase 1 (CBR1) participated in this metabolism. The enzyme activity analysis showed that both chicken CBR1 (cCBR1) and porcine CBR1 (pCBR1) were capable of catalyzing the carbonyl reduction of MEQ and its N-oxide reductive metabolite, 1-deoxymequindox. By comparison of the kinetic constants, we observed that the activity of cCBR1 was higher than pCBR1 to MEQ and the standard substrate of CBR1, menadione. On the other hand, both CBR1s exhibited higher activity to 1-deoxymequindox than MEQ. Mutation analysis suggested that the difference of amino acid at position 141/142 may be one possible reason that caused the activity difference between cCBR1 and pCBR1. Thus far, CBR1 was first reported to participate in the carbonyl reduction of MEQ. Our results will be helpful to recognize the metabolic pathways of quinoxaline drugs deeply and to provide a theoretical basis for controlling the negative effects of these drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereoselective reduction of 4-benzoylpyridine in the heart of vertebrates.

The stereoselectivity in the reduction of 4-benzoylpyridine (4-BP) was examined in the cytosolic fractions from the heart of 9 vertebrates (pig, rabbit, guinea pig, rat, mouse, chicken, soft-shelled turtle, frog and flounder). 4-BP was stereoselectively reduced to S(-)-alpha-phenyl-4-pyridylmethanol [S(-)-PPOL] in the cytosolic fractions from the heart of pig, rabbit and guinea pig. However, of...

متن کامل

Inhibition of carbonyl reductase activity in pig heart by alkyl phenyl ketones.

The inhibitory effects of alkyl phenyl ketones on carbonyl reductase activity were examined in pig heart. In this study, carbonyl reductase activity was estimated as the ability to reduce 4-benzoylpyridine to S(-)-alpha-phenyl-4-pyridylmethanol in the cytosolic fraction from pig heart (pig heart cytosol). The order of their inhibitory potencies was hexanophenone > valerophenone > heptanophenone...

متن کامل

In vitro metabolism of the phosphatidylinositol 3-kinase inhibitor, wortmannin, by carbonyl reductase.

The phosphatidylinositol 3-kinase inhibitor, wortmannin, is extensively used in molecular signaling studies and has been proposed as a potential antineoplastic agent. The failure to detect wortmannin in mouse plasma after i.v. administration prompted in vitro studies of wortmannin metabolism. Wortmannin was incubated with mouse tissue homogenates, homogenate fractions, or purified, recombinant ...

متن کامل

Purification and characterization of akr1b10 from human liver: role in carbonyl reduction of xenobiotics.

Members of the aldo-keto reductase (AKR) superfamily have a broad substrate specificity in catalyzing the reduction of carbonyl group-containing xenobiotics. In the present investigation, a member of the aldose reductase subfamily, AKR1B10, was purified from human liver cytosol. This is the first time AKR1B10 has been purified in its native form. AKR1B10 showed a molecular mass of 35 kDa upon g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 40 4  شماره 

صفحات  -

تاریخ انتشار 2012